Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis
نویسندگان
چکیده
UNLABELLED Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. IMPORTANCE This study determined the bacterial community structure of the common sponge Haliclona cymaeformis and examined the effect of copper treatment on the community structure and functional gene composition, revealing that copper treatment had a selective effect on the functions of the bacterial community in the sponge. These findings suggest that copper pollution has an ecological impact on the sponge symbiont. The analysis showed that the untreated sponges hosted symbiotic autotrophic bacteria as dominant species, and the high-concentration copper treatment enriched for a heterotrophic bacterial community with enrichment for genes important for bacterial motility, supplementary cellular components, signaling and regulation, and virulence. Microscopic observation showed obvious bacterial aggregation and a reduction of sponge cell numbers in treated sponges, which suggested the formation of aggregates to reduce the copper concentration. The enrichment for functions of directional bacterial movement and supplementary cellular components and the formation of bacterial aggregates and phage enrichment are novel findings in sponge studies.
منابع مشابه
Effect of polybrominated diphenyl ether (PBDE) treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis
Marine sponges play important roles in benthic environments and are sensitive to environmental stresses. Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants since the 1970s and are cytotoxic and genotoxic to organisms. In the present study, we studied the short-period effect of PBDE-47 (2,2',4,4'-tetrabromodiphenyl ether) treatment on the community structure and fun...
متن کاملChemical control of epibiosis by Hong Kong sponges: the effect of sponge extracts on micro- and macrofouling communities
The relationship between antifouling metabolite production and epibiosis on the surfaces of the sponges Haliclona cymaeformis, Haliclona sp. and Callyspongia sp. was investigated in this study. Densities of macrofoulers and diatoms were suppressed on the surfaces of all examined sponges, while densities of bacteria on the surfaces of H. cymaeformis and Callyspongia sp. were similar to those on ...
متن کاملAntifungal Activity Evaluation of the Constituents of Haliclona baeri and Haliclona cymaeformis, Collected from the Gulf of Thailand
A new compound maleimide-5-oxime was isolated, together with 3,4-dihydroxybenzoic acid, tetillapyrone, from the ethyl acetate extract of the marine sponge Haliclona baeri while tetillapyrone, nortetillapyrone, p-hydroxybenzaldehyde and phenylacetic acid were isolated from the ethyl acetate extract of Haliclona cymaeformis, collected from the Gulf of Thailand. The structures of tetillapyrone and...
متن کاملIdentification species of Demospongiae sponge at Assaluyeh Persian Gulf
The marine environment is a rich source of biodiversity and chemical compounds, and based on biodiversity knowledge, it is believed that the highest biodiversity is related to living organisms in tropical and semi-equatorial regions. The goal of this study was the biodiversity of Demospongiae sponge in Assaluyeh area in May 2018. Sampling carried oyu by using Coadrat in three sites with three r...
متن کاملLiving in a potentially toxic environment: comparisons of endofauna in two congeneric sponges from the Great Barrier Reef
The abundance and community composition of the endofauna in 2 species of sponge, Haliclona sp. 1 and Haliclona sp. 2 (phylum Porifera: order Haplosclerida), were examined at different sites on the slope at Heron Island Reef, in the southern Great Barrier Reef, on 2 separate occasions. Both species of Haliclona occupy similar habitats on the reef slope and are often found living adjacent to each...
متن کامل